• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ma, Yong (Ma, Yong.) | Bao, Chang-chun (Bao, Chang-chun.) (学者:鲍长春) | Liu, Jia (Liu, Jia.)

收录:

CPCI-S

摘要:

Efficient speaker segmentation and clustering method based on the improved spectral clustering is proposed in this paper. Traditional speaker segmentation and clustering is performed by the hierarchical clustering algorithms with Bayesian information criterion (BIC) metric and cross likelihood ratio (CLR) metric after the speakers are segmented. Since this method has high computational complexity and may result in a suboptimal solution, we use spectral clustering to overcome this problem and improve the performance of clustering algorithm. First the affinity matrix is constructed with the mean supervector feature transformed by KL kernel mapping. And then the scaling parameter is selected adaptively. The experiments performed on the NIST 1998 multi-speaker corpus show that the proposed method outperforms the baseline system.

关键词:

Speaker segmentation and clustering Spectral Clustering Bayesian information criterion

作者机构:

  • [ 1 ] [Ma, Yong]Beijing Univ Technol, Sch Elect Informat & Control Engn, Speech & Audio Signal Proc Lab, Beijing 100124, Peoples R China
  • [ 2 ] [Bao, Chang-chun]Beijing Univ Technol, Sch Elect Informat & Control Engn, Speech & Audio Signal Proc Lab, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, Jia]Tsinghua Univ, Dept Elect Engn, Natl Tsing Lab Informat Sci & Technol, Beijing 100084, Peoples R China

通讯作者信息:

  • [Ma, Yong]Beijing Univ Technol, Sch Elect Informat & Control Engn, Speech & Audio Signal Proc Lab, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

2011 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP)

ISSN: 2161-0363

年份: 2011

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:183/3910362
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司