• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Ma, Li (Ma, Li.) (Scholars:李明爱) | Yao, Minghui (Yao, Minghui.) | Zhang, Wei (Zhang, Wei.) (Scholars:张伟) | Lou, Kai (Lou, Kai.) | Cao, Dongxing (Cao, Dongxing.) (Scholars:曹东兴) | Niu, Yan (Niu, Yan.)

Indexed by:

EI Scopus SCIE

Abstract:

This paper focuses on the derivation of the aerodynamic force for the cantilever plate in subsonic flow. For the first time, a new analytical expression of the quasi-steady aerodynamic force related to the velocity and the deformation for the high-aspect-ratio cantilever plate in subsonic flow is derived by utilizing the subsonic thin airfoil theory and Kutta-Joukowski theory. Results show that aerodynamic force distribution obtained theoretically is consistent with that calculated by ANSYS FLUENT. Based on the first-order shear deformation and von Karman nonlinear geometric relationship, nonlinear partial differential dynamical equations of the high-aspect-ratio plate subjected to the aerodynamic force are established by using Hamilton's principle. Galerkin approach is applied to discretize the governing equations to ordinary differential equations. Numerical simulation is utilized to investigate the relation between the critical flutter velocity and some parameters of the system. Results show that when the inflow velocity reaches the critical value, limit cycle oscillation occurs. The aspect ratio, the thickness, and the air damping have significant impact on the critical flutter velocity of the thin plate.

Keyword:

Author Community:

  • [ 1 ] [Ma, Li]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 2 ] [Yao, Minghui]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Wei]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 4 ] [Cao, Dongxing]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 5 ] [Niu, Yan]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 6 ] [Lou, Kai]Commun Construct Co Ltd, Water Transport Planning & Design Co Ltd, Beijing 100007, Peoples R China

Reprint Author's Address:

  • 姚明辉

    [Yao, Minghui]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Related Article:

Source :

SHOCK AND VIBRATION

ISSN: 1070-9622

Year: 2020

Volume: 2020

1 . 6 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:115

Cited Count:

WoS CC Cited Count: 1

SCOPUS Cited Count: 1

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 2

Online/Total:662/5611672
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.