• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chai, Wei (Chai, Wei.) | Sun, Xianfang (Sun, Xianfang.) | Qiao, JunFei (Qiao, JunFei.) (学者:乔俊飞)

收录:

CPCI-S EI Scopus

摘要:

A set membership identification method by pattern classification is proposed for nonlinear-in-parameter regression models with unknown but bounded(UBB) noises. Suppose that the points in the parameter space can be divided into two classes according to whether they are in the feasible solution set or not, the problem of set membership identification is to construct a pattern classifier to decide which class a point belongs to. The method has three steps. Firstly, the training data are selected uniformly in the parameter space and are decided by equation error whether they are in the feasible solution set. Secondly, supervised locally linear embedding(SLLE) is used to map the training data into low-dimensional space. Thirdly, nearest mean classifier(NMC) is trained on the mapped training data. This method not only can describe the feasible solution set approximately in the high-dimensional parameter space, but also can characterize it in the low-dimensional feature space. Simulation results show the effectiveness of the proposed method.

关键词:

supervised locally linear embedding nonlinear systems parameter estimation set membership

作者机构:

  • [ 1 ] [Chai, Wei]Beijing Univ Technol, Sch Elect Informat & Control Engn, Beijing, Peoples R China
  • [ 2 ] [Qiao, JunFei]Beijing Univ Technol, Sch Elect Informat & Control Engn, Beijing, Peoples R China
  • [ 3 ] [Sun, Xianfang]Beihang Univ, Sch Automat Sci & Elect Engn, Beijing, Peoples R China

通讯作者信息:

  • [Chai, Wei]Beijing Univ Technol, Sch Elect Informat & Control Engn, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA)

年份: 2010

页码: 5562-5567

语种: 中文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:499/4292512
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司