• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Lu, Fei (Lu, Fei.) | Xue, Liugen (Xue, Liugen.) (学者:薛留根) | Hu, Yuping (Hu, Yuping.)

收录:

Scopus SCIE

摘要:

Modelling the covariance structure of multivariate longitudinal data is more challenging than its univariate counterpart, owing to the complex correlated structure among multiple responses. Furthermore, there are little methods focusing on the robustness of estimating the corresponding correlation matrix. In this paper, we propose an alternative Cholesky block decomposition (ACBD) for the covariance matrix of multivariate longitudinal data. The new unconstrained parameterization is capable to automatically eliminate the positive definiteness constraint of the covariance matrix and robustly estimate the correlation matrix with respect to the model misspecifications of the nested prediction error covariance matrices. The entries of the new decomposition are modelled by regression models, and the maximum likelihood estimators of the regression parameters in joint mean-covariance models are computed by a quasi-Fisher iterative algorithm. The resulting estimators are shown to be consistent and asymptotically normal. Simulations and real data analysis illustrate that the new method performs well.

关键词:

maximum likelihood estimation multivariate longitudinal data Correlation matrix Cholesky decomposition robust estimation

作者机构:

  • [ 1 ] [Lu, Fei]Beijing Univ Technol, Coll Appl Sci, Beijing, Peoples R China
  • [ 2 ] [Xue, Liugen]Beijing Univ Technol, Coll Appl Sci, Beijing, Peoples R China
  • [ 3 ] [Hu, Yuping]Zhengzhou Univ, Sch Math & Stat, Zhengzhou, Peoples R China

通讯作者信息:

  • [Lu, Fei]Beijing Univ Technol, Coll Appl Sci, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION

ISSN: 0094-9655

年份: 2020

期: 13

卷: 90

页码: 2473-2496

1 . 2 0 0

JCR@2022

ESI学科: MATHEMATICS;

ESI高被引阀值:46

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:869/3913282
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司