收录:
摘要:
The resonant chaotic dynamics of a symmetric cross-ply composite laminated plate are studied using the exponential dichotomies and an averaging procedure for the first time. The partial differential governing equations of motion for the symmetric cross-ply composite laminated plate are derived by using Reddy's third-order shear deformation plate theory and von Karman type equation. The partial differential governing equations of motion are discretized into two-degree-of-freedom nonlinear systems including the quadratic and cubic nonlinear terms by using Galerkin method. There exists a fixed point of saddle-focus in the linear part for two-degree-of-freedom nonlinear system. The Melnikov method containing the terms of the nonhyperbolic mode is developed to investigate the resonant chaotic motions of the symmetric cross-ply composite laminated plate. The obtained results indicate that the nonhyperbolic mode of the symmetric cross-ply composite laminated plate does not affect the critical conditions in the occurrence of chaotic motions in the resonant case. When the resonant chaotic motion occurs, we can draw a conclusion that the resonant chaotic motions of the hyperbolic subsystem are shadowed for the full nonlinear system of the symmetric cross-ply composite laminated plate.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
ISSN: 0218-1274
年份: 2020
期: 7
卷: 30
2 . 2 0 0
JCR@2022
ESI学科: MATHEMATICS;
ESI高被引阀值:46
归属院系: