收录:
摘要:
Pitting and micropitting are the two main gear rolling contact fatigue modes. It is widely accepted that micropitting will lead to pitting; however, the relationship between pitting and micropitting life needs further investigation. In this work, micropitting and pitting tests were performed on an FZG back-to-back test rig using standard FZG PT-C and GF-C gears. The gear tooth profile change due to micropitting and pitting damage was measured in situ in the gearbox using a profilometer after each test. The gear surface roughness parameters were calculated from the measured tooth profile. A Gaussian low pass filter with cut off length lambda c=0.8 mm was applied to the measured tooth profile to obtain the waviness. The calculated roughness parameters and the obtained tooth profile with waviness for each test were imported into the KISSsoft software to calculate the contact stress and specific film thickness at the corresponding load stage. Experimental results show that smooth gear surface can reduce or even avoid micropitting damage, but could lead to a reduction in pitting life.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE
ISSN: 0954-4062
年份: 2020
期: 24
卷: 234
页码: 4953-4961
2 . 0 0 0
JCR@2022
ESI学科: ENGINEERING;
ESI高被引阀值:115
归属院系: