• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Huan (Wang, Huan.) | Liu, Hongyun (Liu, Hongyun.) | Ju, Hehua (Ju, Hehua.) | Li, Xiuzhi (Li, Xiuzhi.)

收录:

CPCI-S

摘要:

Rao-Blackwellized particle filters simultaneous localization and mapping can yield effective results but it has the tendency to become inconsistent. To ensure consistency, a methodology of an unscented Kalman filter and Markov Chain Monte Carlo resampling are incorporated. More accurate nonlinear mean and variance of the proposal distribution are obtained without the linearization procedure in extended Kalman filter. Furthermore, the particle impoverishment induced by resampling is averted after the resample move step. Thus particles are less susceptible to degeneracies. The algorithms are evaluated on accuracy and consistency using computer simulation. Experimental results illustrate the advantages of our methods over previous approaches.

关键词:

unscented Kalman filter (UKF) consistency Rao-Blackwellized particle filters (RBPF) Markov Chain Monte Carlo (MCMC) Simultaneous localization and mapping (SLAM)

作者机构:

  • [ 1 ] [Wang, Huan]Beijing Univ Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Hongyun]Beijing Univ Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Ju, Hehua]Beijing Univ Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Xiuzhi]Beijing Univ Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Wang, Huan]Beijing Univ Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

INTELLIGENT ROBOTICS AND APPLICATIONS, PROCEEDINGS

ISSN: 0302-9743

年份: 2009

卷: 5928

页码: 205-214

语种: 英文

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:323/3911727
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司