• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zheng, Y. (Zheng, Y..) | Shi, X. -L. (Shi, X. -L..) | Yuan, H. (Yuan, H..) | Lu, S. (Lu, S..) | Qu, X. (Qu, X..) | Liu, W. -D. (Liu, W. -D..) | Wang, L. (Wang, L..) (学者:王丽) | Zheng, K. (Zheng, K..) (学者:郑坤) | Zou, J. (Zou, J..) | Chen, Z. -G. (Chen, Z. -G..)

收录:

EI Scopus SCIE

摘要:

Semiconducting microbelts are key components of the thermoelectric micro-devices, and their electrical transport properties play significant roles in determining the thermoelectric performance. Here, we report heavily Cu-doped single-crystal SnSe microbelts as potential candidates used in thermoelectric microdevices, fabricated by a facile solvothermal route. The considerable Cu-doping concentration of similar to 11.8% up to the solubility contributes to a high electrical conductivity of similar to 416.6 S m(-1) at room temperature, improved by one order of magnitude compared with pure SnSe (38.0 S m(-1)). Meanwhile, after loading similar to 1% compressive strain and laser radiation, the electrical conductivity can be further improved to similar to 601.9 S m(-1) and similar to 589.2 S m(-1), respectively, indicating great potentials for applying to thermoelectric microdevices. Comprehensive structural and compositional characterizations indicate that the Cu+ doping state provides more hole carriers into the system, contributing to the outstanding electrical conductivity. Calculations based on first-principle density functional theory reveal that the heavily doped Cu lowers the Fermi level down into the valence bands, generating holes, and the 1% strain can further reduce the bandgap, strengthening the ability to release holes, and, in turn, leading to such an excellent electrical transport performance. This study fills the gaps of finding novel materials as potential candidates used in the thermoelectric microdevices and provides new ideas for micro/nanoscale thermoelectric material design. (C) 2020 Elsevier Ltd. All rights reserved.

关键词:

Stress Tin selenide Electrical transport performance Cu-doping Irritation

作者机构:

  • [ 1 ] [Zheng, Y.]Beijing Univ Technol, Inst Microstruct & Property Adv Mat, Beijing Key Lab Microstruct & Property Solids, Beijing 100124, Peoples R China
  • [ 2 ] [Yuan, H.]Beijing Univ Technol, Inst Microstruct & Property Adv Mat, Beijing Key Lab Microstruct & Property Solids, Beijing 100124, Peoples R China
  • [ 3 ] [Qu, X.]Beijing Univ Technol, Inst Microstruct & Property Adv Mat, Beijing Key Lab Microstruct & Property Solids, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, L.]Beijing Univ Technol, Inst Microstruct & Property Adv Mat, Beijing Key Lab Microstruct & Property Solids, Beijing 100124, Peoples R China
  • [ 5 ] [Zheng, K.]Beijing Univ Technol, Inst Microstruct & Property Adv Mat, Beijing Key Lab Microstruct & Property Solids, Beijing 100124, Peoples R China
  • [ 6 ] [Shi, X. -L.]Univ Southern Queensland, Ctr Future Mat, Springfield Cent, Qld 4300, Australia
  • [ 7 ] [Chen, Z. -G.]Univ Southern Queensland, Ctr Future Mat, Springfield Cent, Qld 4300, Australia
  • [ 8 ] [Shi, X. -L.]Univ Queensland, Sch Mech & Min Engn, Brisbane, Qld 4072, Australia
  • [ 9 ] [Liu, W. -D.]Univ Queensland, Sch Mech & Min Engn, Brisbane, Qld 4072, Australia
  • [ 10 ] [Zou, J.]Univ Queensland, Sch Mech & Min Engn, Brisbane, Qld 4072, Australia
  • [ 11 ] [Chen, Z. -G.]Univ Queensland, Sch Mech & Min Engn, Brisbane, Qld 4072, Australia
  • [ 12 ] [Lu, S.]Zhengzhou Univ, Coll Chem & Mol Engn, Zhengzhou 450001, Henan, Peoples R China
  • [ 13 ] [Zou, J.]Univ Queensland, Ctr Microscopy & Microanal, Brisbane, Qld 4072, Australia

通讯作者信息:

  • 郑坤

    [Zheng, K.]Beijing Univ Technol, Inst Microstruct & Property Adv Mat, Beijing Key Lab Microstruct & Property Solids, Beijing 100124, Peoples R China;;[Chen, Z. -G.]Univ Southern Queensland, Ctr Future Mat, Springfield Cent, Qld 4300, Australia;;[Chen, Z. -G.]Univ Queensland, Sch Mech & Min Engn, Brisbane, Qld 4072, Australia

查看成果更多字段

相关关键词:

来源 :

MATERIALS TODAY PHYSICS

ISSN: 2542-5293

年份: 2020

卷: 13

1 1 . 5 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 36

SCOPUS被引频次: 34

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:492/3894455
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司