• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xu, Xiaozhao (Xu, Xiaozhao.) | Zhang, Xinfeng (Zhang, Xinfeng.) | Cai, Yiheng (Cai, Yiheng.) | Zhuo, Li (Zhuo, Li.) | Shen, Lansun (Shen, Lansun.)

收录:

CPCI-S

摘要:

Color information is very important for the applications of object recognition and image retrieval. However, the actual color varies by the illumination conditions. A supervised color correction based on hybrid algorithm combining Quantum Particle Swarm Optimization (QPSO) with Back Propagation (BP) neural network is proposed in this paper to reduce the effects of illumination conditions. Firstly, the Macbeth color checker containing 24 color patches is adopted. Then those color values of color patches under unknown illumination and standard illumination are recorded in order to obtain the learning samples. Finally, the transformation model is established by QPSO-BP neural network algorithm according to the learning samples. The experimental results show that the QPSO-BP algorithm is better than BP algorithm in convergence speed. Comparably, the proposed algorithm has better color correction result, thus can be efficiently applied in practice.

关键词:

color correction quantum particle swarm optimization BP neural network

作者机构:

  • [ 1 ] [Xu, Xiaozhao]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China
  • [ 2 ] [Zhang, Xinfeng]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China
  • [ 3 ] [Cai, Yiheng]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China
  • [ 4 ] [Zhuo, Li]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China
  • [ 5 ] [Shen, Lansun]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China

通讯作者信息:

  • [Xu, Xiaozhao]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9

年份: 2009

页码: 3124-3128

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:261/3778097
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司