• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Cui, Lingli (Cui, Lingli.) (学者:崔玲丽) | Wang, Xin (Wang, Xin.) | Wang, Huaqing (Wang, Huaqing.) | Ma, Jianfeng (Ma, Jianfeng.)

收录:

EI Scopus SCIE

摘要:

Rolling bearings are the key components of rotating machinery. Thus, the prediction of remaining useful life (RUL) is vital in condition-based maintenance (CBM). This paper proposes a new method for RUL prediction of bearings based on time-varying Kalman filter, which can automatically match different degradation stages of bearings and effectively realize the prediction of RUL. The evolution of monitoring data in normal and slow degradation stages is a linear trend, and the evolution in accelerated degradation stage is nonlinear. Therefore, Kalman filter models based on linear and quadratic functions are established. Meanwhile, a sliding window relative error is constructed to adaptively judge the bearing degradation stages. It can automatically switch filter models to process monitoring data at different stages. Then, the RUL can be predicted effectively. Two groups of bearing run-to-failure data sets are utilized to demonstrate the feasibility and validity of the proposed method.

关键词:

time-varying Kalman filter rolling element bearings Remaining useful life (RUL) prediction

作者机构:

  • [ 1 ] [Cui, Lingli]Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Xin]Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Ma, Jianfeng]Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Huaqing]Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R China

通讯作者信息:

  • [Wang, Huaqing]Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R China

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

ISSN: 0018-9456

年份: 2020

期: 6

卷: 69

页码: 2858-2867

5 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次: 164

SCOPUS被引频次: 166

ESI高被引论文在榜: 31 展开所有

  • 2024-11
  • 2024-11
  • 2024-9
  • 2024-9
  • 2024-7
  • 2024-5
  • 2024-3
  • 2024-1
  • 2023-11
  • 2023-9
  • 2023-7
  • 2023-5
  • 2023-3
  • 2023-1
  • 2022-11
  • 2022-9
  • 2022-7
  • 2022-5
  • 2022-3
  • 2022-3
  • 2022-3
  • 2022-1
  • 2021-11
  • 2021-9
  • 2021-7
  • 2021-5
  • 2021-3
  • 2021-1
  • 2020-11
  • 2020-9
  • 2020-7

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:494/3900220
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司