• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Huaqing (Wang, Huaqing.) | Li, Shi (Li, Shi.) | Song, Liuyang (Song, Liuyang.) | Cui, Lingli (Cui, Lingli.) (学者:崔玲丽) | Wang, Pengxin (Wang, Pengxin.)

收录:

EI Scopus SCIE

摘要:

An enhanced intelligent diagnosis method for rotary equipment is proposed based on multi-sensor data-fusion and an improved deep convolutional neural network (CNN) models. An improved CNN based on LeNet-5 is constructed which can enhance the features of the samples by stacking bottleneck layers without changing the size of the samples. A new conversion approaches are also proposed for converting multi-sensor vibration signals into color images, and it can refine features and enlarge the differences between different types of fault signals by the fused images transformed in red-green-blue (RGB) color space. In the last stage of network learning, visual clustering is realized with t-distributed stochastic neighbor embedding (t-SNE) to evaluate the performance of the network. To verify the effectiveness of the proposed method, examples in practice such as the diagnosis for the wind power test rigs and industrial fan system are provided with the prediction accuracies of 99.89% and 99.77%, respectively. In addition, the efficiency of other comparative baseline approaches such as the deep belief network and support vector machine (SVM) is evaluated. In conclusion, the proposed intelligent diagnosis method based on multi-sensor data-fusion and CNN shows higher prediction accuracy and more obvious visualization clustering effects.

关键词:

convolutional neural network (CNN) Color-image intelligent diagnosis multi-sensor data fusion

作者机构:

  • [ 1 ] [Wang, Huaqing]Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R China
  • [ 2 ] [Li, Shi]Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R China
  • [ 3 ] [Song, Liuyang]Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R China
  • [ 4 ] [Wang, Pengxin]Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R China
  • [ 5 ] [Cui, Lingli]Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • 崔玲丽

    [Wang, Huaqing]Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R China;;[Cui, Lingli]Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

ISSN: 0018-9456

年份: 2020

期: 6

卷: 69

页码: 2648-2657

5 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次: 135

SCOPUS被引频次: 132

ESI高被引论文在榜: 21 展开所有

  • 2024-3
  • 2024-1
  • 2023-11
  • 2023-9
  • 2023-7
  • 2023-5
  • 2023-3
  • 2023-1
  • 2022-11
  • 2022-9
  • 2022-7
  • 2022-5
  • 2022-3
  • 2022-3
  • 2022-3
  • 2022-1
  • 2021-11
  • 2021-9
  • 2021-7
  • 2021-5
  • 2021-3

万方被引频次:

中文被引频次:

近30日浏览量: 6

在线人数/总访问数:115/3774755
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司