• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Quan, Limin (Quan, Limin.) | Yang, Cuili (Yang, Cuili.)

收录:

EI Scopus SCIE

摘要:

To predict the effluent ammonia nitrogen (NH4-N) of wastewater treatment process (WWTP), the soft computing methods are widely used, in which the mean square error (MSE) is usually adopted as the performance criterion. However, the MSE based methods cannot fully utilize the statistic information of data and are vulnerable to the nonzero-mean noise. To address these issues, the modeling-error probability density function based fuzzy neural network (PDF-FNN) is proposed in this paper. Firstly, the modeling error PDF criterion is generated to minimize the spatial deviation between the modeling error distribution and the predefined target. Then, a gradient descent method with adaptive learning rate is presented to update the parameters of PDF-FNN. Furthermore, the convergence of PDF-FNN is analyzed from a mathematical point of view. Finally, a nonlinear system modeling and the effluent NH4-N prediction in WWTP are applied to prove the effectiveness of the proposed PDF-FNN. The results indicate that the PDF-FNN has better prediction accuracy and model stability than other methods, especially in the noisy environment. (C) 2020 Elsevier B.V. All rights reserved.

关键词:

Modeling error PDF Adaptive learning rate Effluent ammonia nitrogen Convergence analysis Fuzzy neural network

作者机构:

  • [ 1 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • 乔俊飞

    [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

APPLIED SOFT COMPUTING

ISSN: 1568-4946

年份: 2020

卷: 91

8 . 7 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:132

被引次数:

WoS核心集被引频次: 15

SCOPUS被引频次: 14

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:632/4761833
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司