• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

He, Ming (He, Ming.)

收录:

CPCI-S EI Scopus

摘要:

Attribute reduction is an important issue in data mining and knowledge acquisition. It has been proven that computing all reductions and optimal (minimal) reduction is a NP-hard problem. This paper proposed a hybrid approach using the rough set theory and neighborhood systems for feature selection. Two neighborhood approximation operators are defined based on rough set. A neighborhood rough model is constructed subsequently and the heuristic information is introduced according to the significance of attributes respectively. Experimental results indicate that the proposed method can reduce attributes effectively.

关键词:

feature selection neighborhood systems rough set

作者机构:

  • [ 1 ] Beijing Univ Technol, Coll Comp Sci, Beijing, Peoples R China

通讯作者信息:

  • [He, Ming]Beijing Univ Technol, Coll Comp Sci, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

WKDD: 2009 SECOND INTERNATIONAL WORKSHOP ON KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS

年份: 2009

页码: 3-5

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 10

在线人数/总访问数:968/3645716
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司