• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Fan, Qingwu (Fan, Qingwu.) | Wang, Pu (Wang, Pu.) (学者:王普) | Huang, Jing (Huang, Jing.)

收录:

CPCI-S

摘要:

Currently most of the analysis about the running mechanism of GA focuses on the convergence problem while few focus on population characteristics after the single generation descendiblity. This paper presents the concept of evolution ability of population and discusses the ability of finding the optimal solution for the population after one-generation selection, crossover and mutation. Based on the analysis of effect of crossover on evolution ability of population, the experimental results show that the important method for improving evolution ability of population is to include larger crossover optimal solution area in a smaller crossover family area. If the crossover optimal solution area isn't included in any crossover family area of population, the population either converges to the optimal solution, or evolution will be trapped in the premature of convergence. These conclusions above do not only help improve the GA, but also provide the basis for later research work.

关键词:

Genetic Algorithm Evolution Ability of Population Crossover Operators

作者机构:

  • [ 1 ] [Fan, Qingwu]Beijing Univ Technol, Beijing, Peoples R China
  • [ 2 ] [Huang, Jing]Beijing Univ Technol, Beijing, Peoples R China

通讯作者信息:

  • [Fan, Qingwu]Beijing Univ Technol, 89 Lu Yuan S Ave, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

WORLD SUMMIT ON GENETIC AND EVOLUTIONARY COMPUTATION (GEC 09)

年份: 2009

页码: 113-118

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:2510/3863140
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司