摘要:
本文提出一类新的固体的离散型变分原理.它是从有限元离散分析的实际出发,考虑到元素的边界为可动边界,并且由于分片构造待解函数,使待解函数在元素的交界处具有各种间断性.由此,我们利用数学中的具有各种间断性的可动边界的变分方法,基于一阶变分为零的驻值条件上,建立了固体的离散型变分原理.离散型变分原理消除了元素交界处所导入的误差.它概括了古典与非古典变分原理.本文得到的待解函数应满足的交界方程,是有限元的收敛性(包括非保形元素在内)的必要条件,它开拓了待解函数应满足协调性的收敛性要求。
关键词:
通讯作者信息:
电子邮件地址: