• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiao Junfei (Qiao Junfei.) (学者:乔俊飞) | Jia Yanmei (Jia Yanmei.) | Han Honggui (Han Honggui.) (学者:韩红桂)

收录:

CPCI-S EI Scopus

摘要:

According the problem of difficult to measure online water quality parameters of activated sludge process wastewater treatment system, this paper proposed a new growth Self-Organization Neural Network This network can dynamic generate network nodes and grow to suitable network structure rapidly according to need in the learning process no need to advance set the value the structure and scale. The water quality parameters model of wastewater treatment system based on this network, have more strong adaptive ability, can learning online, network structure is simple, learning velocity rapid, prediction effluent water COD concentration effectively according to input, which proved high effectiveness of this method.

关键词:

water quality prediction Self-Organization wastewater treatment system modeling Neural Network

作者机构:

  • [ 1 ] [Qiao Junfei]Beijing Univ Technol, Coll Elect & Control Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Jia Yanmei]Beijing Univ Technol, Coll Elect & Control Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Han Honggui]Beijing Univ Technol, Coll Elect & Control Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • 乔俊飞

    [Qiao Junfei]Beijing Univ Technol, Coll Elect & Control Engn, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11

年份: 2008

页码: 2585-2588

语种: 中文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:331/3908023
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司