• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Wei (Wang, Wei.) (学者:王伟) | He, Yi (He, Yi.) | Zhang, Deyuan (Zhang, Deyuan.) | Wu, Yufeng (Wu, Yufeng.) (学者:吴玉锋) | Pan, Dean (Pan, Dean.) (学者:潘德安)

收录:

SSCI SCIE

摘要:

Improper waste lead-acid battery (LAB) disposal not only damages the environment, but also leads to potential safety hazards. Given that waste best available treatment technology (BATT) plays a major role in environmental protection, pertinent research has largely focused on evaluating typical recycling technologies and recommending the BATT for waste LABs. First the evaluation indicators were selected based on the analysis of main factors affecting the pollution control of waste LAB treatment. The relative weights of each indicator were determined via the Delphi-attribute hierarchy model (AHM) in the second step. To determine the BATT, the attributive mathematics theory was adopted to calculate the attribute measure of single and multiple indices. Then, five recycling technologies commonly used in the secondary lead industry were estimated using the proposed evaluation system, and the feasibility of the recommended BATT was preliminarily verified. The results indicated that mixed smelting technology (MST), pre-desulfurization and multi-chamber smelting technology (PD-MCST), and direct smelting technology (DST) were found to perform well and were therefore deemed optimal for waste LAB disposal at this stage. The validation study showed that the DST can meet the requirements of pollution control, which is consistent with the evaluation results.

关键词:

attribute hierarchy model attribute mathematics theory best available treatment technology evaluation waste lead-acid battery

作者机构:

  • [ 1 ] [Wang, Wei]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Wu, Yufeng]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Pan, Dean]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 4 ] [He, Yi]Minist Ecol & Environm, Solid Waste & Chem Management Ctr, Beijing 100029, Peoples R China
  • [ 5 ] [Zhang, Deyuan]Natl Dev & Reform Commiss, Inst Econ Syst & Management, Beijing 100035, Peoples R China

通讯作者信息:

  • 吴玉锋

    [Wu, Yufeng]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

SUSTAINABILITY

年份: 2020

期: 11

卷: 12

3 . 9 0 0

JCR@2022

ESI学科: ENVIRONMENT/ECOLOGY;

ESI高被引阀值:30

JCR分区:2

被引次数:

WoS核心集被引频次: 6

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:1503/2983886
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司