• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

黄娜 (黄娜.) | 何泾沙 (何泾沙.) (学者:何泾沙)

收录:

Scopus CQVIP CSCD

摘要:

为了提高准确率与效率,提出一种基于深度特征与局部特征融合的图像检索方法,选择深度特征作为全局特征,局部特征采用加速不变特征(speeded up robust features,SURF)和局部二值模式(local binary pattern,LBP)等.为了解决典型相关分析(canonical correlation analysis,CCA)的特征融合方法存在信息缺失、信息冗余2个缺陷的问题,将目标函数改进为最小化特征之间的相关性,求解出变换基,通过投影变换得到2种特征中各自所包含的独立性信息,在此基础上加入其中一方所包含的相关性信息,得到最终的融合结果.改进后的融合方法能够更加全面地表征原始数据,同时消除冗余信息.在实验中,首先通过图像分类的应用验证了深度特征与LBP特征融合具有较好的判别能力,平均分类准确率达到99.1%,同时具有较高的时间效率.通过实验讨论不同维度对特征融合性能的影响,结果表明,增加特征选择的维度能够在一定程度上提高分类准确率.最后,验证基于深度特征与局部特征融合的图像检索方法,计算融合特征的相似性距离,根据距离度量得到检索排名.在实验数据集上查准率为98.0%,查全率为46.0%.对比结果表明,该方法不仅能实现可靠的准确性,还具有较高的时间效率.

关键词:

深度特征 相关分析 特征融合 局部特征 图像分类 图像检索

作者机构:

  • [ 1 ] 北京工业大学信息学部,北京100124

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

北京工业大学学报

ISSN: 0254-0037

年份: 2020

期: 12

卷: 46

页码: 1345-1354

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次: -1

近30日浏览量: 4

归属院系:

在线人数/总访问数:940/3886199
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司