• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wen, Jianian (Wen, Jianian.) | Han, Qiang (Han, Qiang.) (学者:韩强) | Xie, Yazhou (Xie, Yazhou.) | Du, Xiuli (Du, Xiuli.) (学者:杜修力) | Zhang, Jian (Zhang, Jian.)

收录:

EI SCIE

摘要:

The seismic vulnerability of cable-stayed bridges located in seismically active regions can be of great concern to the regional safety and resilience. A promising design practice for cable-stayed bridges lies in decoupling the deck from deck-pylon connection and incorporating energy dissipation devices to reduce the dynamic responses. In this study, the performance-based seismic design (PBSD) procedure is adapted to the optimal design of damper devices at the deck-pylon connections in a benchmark cable-stayed bridge. The benchmark cable-stayed bridge was modeled in the OpenSees platform, which was calibrated against the previous finite element models. Then it was seismically designed with viscous and metallic dampers in the longitudinal and transverse direction, respectively. The component-level fragility functions of the cable-stayed bridge were first derived based upon the multiple stripe analysis (MSA) method, and then the system-level repair cost ratio (RCR) surfaces were built under the PBSD framework. Finally, the genetic algorithm based on parallel computation was utilized to identify the optimal parameters of the damper devices. The analysis results illustrate that the optimal design parameters can be effectively obtained through the proposed method, and the damper devices with optimal parameters lead to a significant reduction of the overall repair cost. The study also demonstrates that if the device parameters are not selected appropriately, the dampers can have negative effects on bridge responses. The design framework and the findings could provide the guidance for the designing and retrofitting of cable-stayed bridges in practice.

关键词:

Cable-stayed bridge Damper devices Fragility function Optimal design Performance-based seismic design

作者机构:

  • [ 1 ] [Wen, Jianian]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Han, Qiang]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Du, Xiuli]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Wen, Jianian]Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA
  • [ 5 ] [Zhang, Jian]Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA
  • [ 6 ] [Xie, Yazhou]McGill Univ, Dept Civil Engn, Montreal, PQ H3A 0C3, Canada

通讯作者信息:

  • [Zhang, Jian]Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ENGINEERING STRUCTURES

ISSN: 0141-0296

年份: 2021

卷: 237

5 . 5 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:9

被引次数:

WoS核心集被引频次: 23

SCOPUS被引频次: 28

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:1133/2990523
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司