Indexed by:
Abstract:
Soil microorganisms play important roles in the ecosystem functioning of subtropical broad-leaved forests (SBFs). However, the patterns and environmental indicators of soil microbial functional structure remain unclear in SBFs. In the present work, we used a functional microarray (GeoChip 4.0) to examine the soil microbial functional structure of three types of SBFs, including a deciduous broad-leaved forest (DBF), a mixed evergreen-deciduous broad-leaved forest (MBF), and an evergreen broad-leaved forest (EBF). We found that microbial functional structure was significantly different among SBFs (P < 0.05). Compared to the DBF and the EBF, the MBF had higher functional a-diversity (P= 0.001, F= 12.55) but lower beta-diversity (P < 0.001, F= 61.09), and showed more complex functional gene networks. Besides, the MBF had higher relative abundances of functional genes for carbon (C) decomposition, C fixation, nitrogen (N) cycling, sulfur (S) cycling, and phosphorus (P) cycling (P < 0.05), indicating stronger microbial functional capabilities of nutrient cycling processes. Edaphic variables (i.e., soil pH and soil nutrient content) were revealed as better indicators of soil microbial functional structure than plant-related ones (i.e., vegetation type and plant diversity) in SBFs. For example, functional gene structure of the DBF was significantly related to soil total S (P = 0.041), that of the MBF was significantly related to soil organic C (P = 0.027) and plant available P (P = 0.034), and that of the EBF was significantly related to soil pH (P = 0.006) and total potassium (K) (P = 0.038). Overall, through the analysis of microbial functional gene profiles, this study yields unique insights into the environmental indicators of patterns and mechanisms of soil microbial functional structure in SBFs. (C) 2021 Published by Elsevier B.V.
Keyword:
Reprint Author's Address:
Email:
Source :
SCIENCE OF THE TOTAL ENVIRONMENT
ISSN: 0048-9697
Year: 2021
Volume: 773
9 . 8 0 0
JCR@2022
ESI Discipline: ENVIRONMENT/ECOLOGY;
ESI HC Threshold:94
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 10
SCOPUS Cited Count: 11
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: