• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chang, Peng (Chang, Peng.) | Li, ZeYu (Li, ZeYu.)

收录:

EI SCIE

摘要:

The wastewater treatment process (WWTP) is a complex biochemical reaction process in which sensor data has strong nonlinear, non-Gaussian and time correlation characteristics. The traditional methods ignore to consider the aforementioned three characteristics simultaneously, which may have insufficient feature extraction of WWTP. In this work, an Over-Complete Deep Recurrent Neural Network (ODRNN) method is proposed to solve the above issues. The ODRNN combines the over-complete independent component analysis (OICA) and binary particle swarm optimization (BPSO) to efficiently extract the non-Gaussian information, and then the extracted information is fed into DRNN to obtain the time correlation characteristics. In this way, the method can not only capture the non-linear and non-Gaussian information but also extract temporal correlation of WWTP data. Simulation results on BSM1 showed that the ODRNN based soft sensor method has higher accuracy and robustness than other state-of-the-art methods. © 2021 Elsevier B.V.

关键词:

Deep neural networks Gaussian distribution Gaussian noise (electronic) Independent component analysis Particle swarm optimization (PSO) Recurrent neural networks Wastewater treatment

作者机构:

  • [ 1 ] [Chang, Peng]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Li, ZeYu]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • [chang, peng]faculty of information technology, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Applied Soft Computing

ISSN: 1568-4946

年份: 2021

卷: 105

8 . 7 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:11

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 16

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:44/3277440
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司