• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Zhang Li (Zhang Li.) | Zheng Kexin (Zheng Kexin.) | Wang Yueping (Wang Yueping.) | Peng Yongzhen (Peng Yongzhen.) (Scholars:彭永臻)

Indexed by:

PubMed

Abstract:

Dissolved organic nitrogen (DON) is a component of wastewater with a negative influence on the environment. The removal of DON is conducted through the anoxic/oxic (A/O) and anammox processes. However, the mechanisms and chemical preferences in the removal of DON compounds have not been understood and compared so far. This study, for the first time, comparatively investigated the molecular-level characteristics of DON during both processes by using FT-ICR MS (Fourier transform ion cyclotron resonance mass spectrometry). The results indicated that the number of DON formulas increased from 1844 to 1935 during A/O process, and from 2784 to 3242 during anammox process, highlighting the increase in complexity of DON after undergoing both processes. DON with high saturation and aliphatic structures were removed by A/O process, whereas highly unsaturated and aromatic structures were removed by anammox process. For DON without S atom, Lignin-like and tannin-like ones were resistant to both processes and protein-like and condensed aromatic structures were resistant to anammox process. The complementarity of these two processes provided a sequential combination with sufficient theoretical support to improve DON removal efficiency.

Keyword:

anammox process molecular characterization anoxic/oxic process ESI FT-ICR MS dissolved organic nitrogen

Author Community:

  • [ 1 ] [Zhang Li]National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Zheng Kexin]National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 3 ] [Wang Yueping]National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 4 ] [Peng Yongzhen]National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Source :

Water environment research : a research publication of the Water Environment Federation

ISSN: 1554-7531

Year: 2021

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 6

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Online/Total:528/5555618
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.