• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhao, Kuan (Zhao, Kuan.) | Zhao, Boxuan (Zhao, Boxuan.) | Wu, Lifang (Wu, Lifang.) (学者:毋立芳) | Jian, Meng (Jian, Meng.) | Liu, Xu (Liu, Xu.)

收录:

EI Scopus SCIE PubMed

摘要:

In object detection of remote sensing images, anchor-free detectors often suffer from false boxes and sample imbalance, due to the use of single oriented features and the key point-based boxing strategy. This paper presents a simple and effective anchor-free approach-RatioNet with less parameters and higher accuracy for sensing images, which assigns all points in ground-truth boxes as positive samples to alleviate the problem of sample imbalance. In dealing with false boxes from single oriented features, global features of objects is investigated to build a novel regression to predict boxes by predicting width and height of objects and corresponding ratios of l_ratio and t_ratio, which reflect the location of objects. Besides, we introduce ratio-center to assign different weights to pixels, which successfully preserves high-quality boxes and effectively facilitates the performance. On the MS-COCO test–dev set, the proposed RatioNet achieves 49.7% AP. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

关键词:

Object detection Object recognition Forecasting Remote sensing

作者机构:

  • [ 1 ] [Zhao, Kuan]Department of Information, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Zhao, Boxuan]Department of Information, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Wu, Lifang]Department of Information, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Jian, Meng]Department of Information, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Liu, Xu]Department of Information, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • [jian, meng]department of information, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Sensors

ISSN: 1424-8220

年份: 2021

期: 5

卷: 21

页码: 1-14

3 . 9 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:96

JCR分区:2

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:188/4299175
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司