• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Chunfang (Liu, Chunfang.) | Li, Xiaoli (Li, Xiaoli.) (学者:李晓理) | Li, Qing (Li, Qing.) | Xue, Yaxin (Xue, Yaxin.) | Liu, Huijun (Liu, Huijun.) | Gao, Yize (Gao, Yize.)

收录:

EI Scopus SCIE

摘要:

It is hoped that the robot could interact with the human when the robots help us in our daily lives. And understanding humans’ specific intention is the first crucial task for human-robot interaction. In this paper, we firstly develop a multi-task model for recognizing humans’ intention, which is composed of two sub-tasks: human action recognition and hand-held object identification. For the front subtask, an effective ST-GCN-LSTM model is proposed by fusing the Spatial Temporal Graph Convolutional Networks and Long Short Term Memory Networks. And for the second subtask, the YOLO v3 model is adopted for the hand-held object identification. Then, we build a framework for robot interacting with the human. Finally, these proposed models and the interacting framework are verified on several datasets and the testing results show the effectiveness of the proposed models and the framework. © 2020 Elsevier B.V.

关键词:

Palmprint recognition Human robot interaction Convolutional neural networks Long short-term memory

作者机构:

  • [ 1 ] [Liu, Chunfang]Faculty of Information and Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Li, Xiaoli]Faculty of Information and Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Li, Qing]Faculty of Information and Technology, Beijing University of Technology, Beijing, China
  • [ 4 ] [Xue, Yaxin]Faculty of Information and Technology, Beijing University of Technology, Beijing, China
  • [ 5 ] [Liu, Huijun]Faculty of Information and Technology, Beijing University of Technology, Beijing, China
  • [ 6 ] [Gao, Yize]Faculty of Information and Technology, Beijing University of Technology, Beijing, China

通讯作者信息:

  • 李晓理

    [li, xiaoli]faculty of information and technology, beijing university of technology, beijing, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Neurocomputing

ISSN: 0925-2312

年份: 2021

卷: 430

页码: 174-184

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:87

JCR分区:2

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 30

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:649/4227807
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司