• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Du, Yongping (Du, Yongping.) (学者:杜永萍) | Wang, Lulin (Wang, Lulin.) | Peng, Zhi (Peng, Zhi.) | Guo, Wenyang (Guo, Wenyang.)

收录:

EI Scopus SCIE

摘要:

In e-commerce platform, users conduct purchase behavior and write reviews for the purchased items. These reviews usually contain a lot of valuable information for recommendation, which can reflect the purchase preference of the user and the characteristic of the item. We propose the Hierarchical Attention Cooperative Neural Networks (HACN) model for recommendation. Hierarchical attention mechanism is adopted to enrich user's and item's feature representation from review texts. Two parallel networks based on review texts are used to model users and items respectively, which makes the generated features more purposeful. Further, the target ID embedding is introduced to capture the global entity relationship in the dataset. The experiments are performed on five real-world datasets of different domains from Amazon, and our proposed HACN model has achieved better results than the existing state-of-the-art methods. © 2021 Elsevier B.V.

关键词:

Recommender systems Hierarchical systems Electronic commerce Sales

作者机构:

  • [ 1 ] [Du, Yongping]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Wang, Lulin]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Peng, Zhi]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Guo, Wenyang]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • [wang, lulin]faculty of information technology, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Neurocomputing

ISSN: 0925-2312

年份: 2021

卷: 447

页码: 38-47

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:87

JCR分区:2

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 18

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:3509/4263142
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司