• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang Xiao-Tong (Wang Xiao-Tong.) | Yang Hong (Yang Hong.) (学者:杨宏)

收录:

EI PubMed CSCD

摘要:

In order to clarify the characteristics of anaerobic ammonia oxidizing (ANAMMOX) sludge and the succession rule of bacteria based on particle size differentiation, the performance change and microbial community structure of ANAMMOX floc sludge during the formation of particles in the reaction system of a high ammonia-nitrogen biofilter were studied. The results indicated that the specific activity (SAA) and tolerance of the ANAMMOX granular sludge (AnGS) were significantly improved by increasing the particle size, and the SAA of R4(>4.75 mm) was up to 426.8 mg·(g·d)-1, but it also had adverse effects on mass transfer. The results of the high-throughput sequencing showed that dynamic changes between bacterial genera were common. When the particle size was less than 4.75 mm, the increase in particle size strengthened the stability of the bacterial flora, the ammonia oxidizing bacteria (AOB) with more flocs were eliminated, and the nitrogen removal ratio gradually stabilized. R3 (2.8-4.75 mm) exhibited the most specific flora composition, and the functional bacteria Candidatus Kuenenia accounted for 52.7%, while the R4 community complexity increased. Furthermore, the proportion of functional bacteria decreased, and the abundance of heterotrophic bacteria increased, which negatively affected the particle structure. In addition, the R3 microorganism has the best gene function expression level, which is significantly better than small particles in gene replication repair and energy conversion. Finally, the evolution of AnGS was analyzed through the OTU matrix between the samples. These results have some guiding significance for the optimization of the AnGS system and will be helpful for the application of the ANAMMOX process.

关键词:

anaerobic ammonium oxidation (ANAMMOX) gene function prediction microbial community structure particle size specific activity

作者机构:

  • [ 1 ] [Wang Xiao-Tong]Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Yang Hong]Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Huanjing kexue

ISSN: 0250-3301

年份: 2021

期: 4

卷: 42

页码: 1930-1938

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:6684/2951996
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司