• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Zhang, Xing (Zhang, Xing.) | Dai, Lingyun (Dai, Lingyun.) | Liu, Yuxi (Liu, Yuxi.) | Deng, Jiguang (Deng, Jiguang.) | Jing, Lin (Jing, Lin.) | Wang, Zhiwei (Wang, Zhiwei.) | Pei, Wenbo (Pei, Wenbo.) | Yu, Xiaohui (Yu, Xiaohui.) | Wang, Jia (Wang, Jia.) | Dai, Hongxing (Dai, Hongxing.) (Scholars:戴洪兴)

Indexed by:

EI Scopus SCIE

Abstract:

The nature of porous support (mesoporous Al2O3 and MgO (denoted as meso-Al2O3 and meso-MgO, respectively) and microporous HZSM-5) on catalytic performance of the bimetallic RuCo nanoparticles (NPs) was investigated for the oxidation of 1,2-dichloroethane (1,2-DCE). Redox and acid properties and reaction intermediates of the samples were measured by means of various techniques. The RuO2 species were dominantly present in the supported bimetallic samples, and Co doping could increase the length of the Ru-O bond. Compared with RuCo/ meso-MgO and RuCo/meso-Al2O3, RuCo/HZSM-5 exhibited the highest catalytic activity (T-90% =281 degrees C, TOFNoble metal = 3.6 x 10(-3) s(-1), reaction rate at 270 ;degrees C = 18.7 mu mol/(g(Noble metal) s), and apparent activation energy =36 kJ/mol at SV = 20,000 mL/(g h)) and the best Cl-resistant performance, which was associated with its strong redox ability, suitable acidity, good 1,2-DCE adsorption capacity, highly dispersed RuCo NPs, and strong interaction between RuCo NPs and HZSM-5. Loading of RuCo NPs on the support could suppress the formation of C2H3Cl and improve the Cl-resistant performance. Over the RuCo/HZSM-5 sample, the partial deactivation induced by water vapor or HCl addition was reversible, while that induced by SO2 introduction was irreversible. Based on the characterization results, we believe that the oxidation of 1,2-DCE over RuCo/meso-Al2O3, RuCo/ meso-MgO or RuCo/HZSM-5 might take place concurrently via the Langmuir-Hinshelwood and Mars-van Krevelen mechanisms. This work can provide a strategy to develop the efficient catalysts with low Cl-containing by-products formation, high CO2 selectivity, and good Cl-resistance in the oxidative removal of Cl-VOCs under the practical conditions.

Keyword:

Supported noble metal catalyst 1, 2-Dichloroethane oxidation br Chlorine-resistance Bimetallic ruthenium-cobalt nanoparticle Support effect

Author Community:

  • [ 1 ] [Zhang, Xing]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat,Educ Mi, Key Lab Beijing Reg Air Pollut Control,Fac Enviro, Key Lab Adv Funct Mat,Sch Environm & Chem Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Yuxi]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat,Educ Mi, Key Lab Beijing Reg Air Pollut Control,Fac Enviro, Key Lab Adv Funct Mat,Sch Environm & Chem Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Deng, Jiguang]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat,Educ Mi, Key Lab Beijing Reg Air Pollut Control,Fac Enviro, Key Lab Adv Funct Mat,Sch Environm & Chem Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Jing, Lin]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat,Educ Mi, Key Lab Beijing Reg Air Pollut Control,Fac Enviro, Key Lab Adv Funct Mat,Sch Environm & Chem Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Zhiwei]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat,Educ Mi, Key Lab Beijing Reg Air Pollut Control,Fac Enviro, Key Lab Adv Funct Mat,Sch Environm & Chem Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Pei, Wenbo]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat,Educ Mi, Key Lab Beijing Reg Air Pollut Control,Fac Enviro, Key Lab Adv Funct Mat,Sch Environm & Chem Engn, Beijing 100124, Peoples R China
  • [ 7 ] [Yu, Xiaohui]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat,Educ Mi, Key Lab Beijing Reg Air Pollut Control,Fac Enviro, Key Lab Adv Funct Mat,Sch Environm & Chem Engn, Beijing 100124, Peoples R China
  • [ 8 ] [Wang, Jia]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat,Educ Mi, Key Lab Beijing Reg Air Pollut Control,Fac Enviro, Key Lab Adv Funct Mat,Sch Environm & Chem Engn, Beijing 100124, Peoples R China
  • [ 9 ] [Dai, Hongxing]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat,Educ Mi, Key Lab Beijing Reg Air Pollut Control,Fac Enviro, Key Lab Adv Funct Mat,Sch Environm & Chem Engn, Beijing 100124, Peoples R China
  • [ 10 ] [Dai, Lingyun]Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA

Reprint Author's Address:

  • [Liu, Yuxi]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat,Educ Mi, Key Lab Beijing Reg Air Pollut Control,Fac Enviro, Key Lab Adv Funct Mat,Sch Environm & Chem Engn, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

APPLIED CATALYSIS B-ENVIRONMENTAL

ISSN: 0926-3373

Year: 2021

Volume: 285

2 2 . 1 0 0

JCR@2022

ESI Discipline: CHEMISTRY;

ESI HC Threshold:96

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 54

SCOPUS Cited Count: 57

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Online/Total:105/5915250
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.