• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Kang, Junpeng (Kang, Junpeng.) | Zhang, Jing (Zhang, Jing.) (学者:张菁) | Li, Wensheng (Li, Wensheng.) | Zhuo, Li (Zhuo, Li.)

收录:

EI Scopus SCIE

摘要:

Since the era of we-media, live video industry has shown an explosive growth trend. For large-scale live video streaming, especially those containing crowd events that may cause great social impact, how to identify and supervise the crowd activity in live video streaming effectively is of great value to push the healthy development of live video industry. The existing crowd activity recognition mainly uses visual information, rarely fully exploiting and utilizing the correlation or external knowledge between crowd content. Therefore, a crowd activity recognition method in live video streaming is proposed by 3D-ResNet and regional graph convolution network (ReGCN). (1) After extracting deep spatiotemporal features from live video streaming with 3D-ResNet, the region proposals are generated by region proposal network. (2) A weakly supervised ReGCN is constructed by making region proposals as graph nodes and their correlations as edges. (3) Crowd activity in live video streaming is recognised by combining the output of ReGCN, the deep spatiotemporal features and the crowd motion intensity as external knowledge. Four experiments are conducted on the public collective activity extended dataset and a real-world dataset BJUT-CAD. The competitive results demonstrate that our method can effectively recognise crowd activity in live video streaming.

关键词:

作者机构:

  • [ 1 ] [Kang, Junpeng]Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing, Peoples R China
  • [ 2 ] [Zhang, Jing]Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing, Peoples R China
  • [ 3 ] [Li, Wensheng]Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing, Peoples R China
  • [ 4 ] [Zhuo, Li]Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing, Peoples R China
  • [ 5 ] [Zhang, Jing]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 6 ] [Zhuo, Li]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China

通讯作者信息:

  • 张菁

    [Zhang, Jing]Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IET IMAGE PROCESSING

ISSN: 1751-9659

年份: 2021

期: 14

卷: 15

页码: 3476-3486

2 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:87

JCR分区:3

被引次数:

WoS核心集被引频次: 2

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:63/3931394
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司