• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Kang (Wang, Kang.) | Yang, Jinfu (Yang, Jinfu.) (学者:杨金福) | Yuan, Shuai (Yuan, Shuai.) | Li, Mingai (Li, Mingai.) (学者:李明爱)

收录:

SCIE

摘要:

As an important task in scene understanding, semantic segmentation requires a large amount of computation to achieve high performance. In recent years, with the rise of autonomous systems, it is crucial to make a trade-off in terms of accuracy and speed. In this paper, we propose a novel asymmetric encoder-decoder network structure to address this problem. In the encoder, we design a Separable Asymmetric Module, which combines depth-wise separable asymmetric convolution with dilated convolution to greatly reduce computation cost while maintaining accuracy. On the other hand, an attention mechanism is also used in the decoder to further improve segmentation performance. Experimental results on CityScapes and CamVid datasets show that the proposed method can achieve a better balance between segmentation precision and speed compared with state-of-the-art semantic segmentation methods. Specifically, our model obtains mean IoU of 72.5% and 66.3% on CityScapes and CamVid test dataset, respectively, with less than 1M parameters.

关键词:

Attention mechanism decoder structure Depth-wise separable asymmetric convolution Dilated convolution Encoder&#8211 Semantic segmentation

作者机构:

  • [ 1 ] [Wang, Kang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Yang, Jinfu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Yuan, Shuai]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Mingai]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Wang, Kang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

VISUAL COMPUTER

ISSN: 0178-2789

年份: 2021

3 . 5 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:11

被引次数:

WoS核心集被引频次: 13

SCOPUS被引频次: 13

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:320/3673444
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司