• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Bilal, Anas (Bilal, Anas.) | Sun, Guangmin (Sun, Guangmin.) (学者:孙光民) | Mazhar, Sarah (Mazhar, Sarah.)

收录:

EI Scopus SCIE

摘要:

Finger vein biometric technology has gained a lot of popularity over recent years. This is primarily due to the increased security and reliability level that comes with its non-intrusive nature. Non-intrusiveness became inevitable due to the pandemic of COVID-19. This paper introduces a unique and lightweight image enhancement method for person identification using Convolutional Neural Networks (CNN). As pre-processing steps, Contrast Limited Adaptive Histogram Equalization (CLAHE) followed by gamma correction is applied. Afterward, the image is sharpened and then passed through the median filter. These steps are followed by applying power law and contrast adjustment. As a final step, CLAHE is used yet again to bring out the enhanced vascular structure. The method was appraised using the four different openly accessible databases. These are regarded as the most challenging available finger vein database-s by many researchers. For recognition purposes, CNN was used with transfer learning. Transfer learning is implemented by modifying the 13 convolutional layers of VGG-16. The proposed model architecture also includes five max-pooling layers, one ReLU, and one Softmax layer. It is observed that with transfer learning, the accuracy could have reached up to 99% on finger-vein recognition on the experimented dataset, thus proved to be a highly accurate approach for finger vein recognition.

关键词:

convolutional neural networks finger vein image processing pattern recognition Contrast limited adaptive histogram equalization transfer learning

作者机构:

  • [ 1 ] [Bilal, Anas]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Sun, Guangmin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Mazhar, Sarah]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • 孙光民

    [Sun, Guangmin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS

ISSN: 0253-3839

年份: 2021

期: 5

卷: 44

页码: 407-417

1 . 1 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:87

JCR分区:4

被引次数:

WoS核心集被引频次: 23

SCOPUS被引频次: 20

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:459/4292316
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司