• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Guo, Xiurui (Guo, Xiurui.) | Shen, Yaqian (Shen, Yaqian.) | Liu, Wenwen (Liu, Wenwen.) | Chen, Dongsheng (Chen, Dongsheng.) (学者:陈东升) | Liu, Junfang (Liu, Junfang.)

收录:

EI SCIE

摘要:

The study of industrial volatile organic compound (VOC) emission inventories is essential for identifying VOC emission levels and distribution. This paper established an industrial VOC emission inventory in 2015 for Hebei Province and completed an emission projection for the period 2020-2030. The results indicated that the total emissions of industrial VOCs in 2015 were 1017.79 kt. The use of VOC products accounted for more than half of the total. In addition, the spatial distribution characteristics of the industrial VOC emissions were determined using a geographic information statistics system (GIS), which showed that the VOCs were mainly distributed the central and southern regions of Hebei. Considering the future economic development trends, population changes, related environmental laws and regulations, and pollution control technology, three scenarios were defined for forecasting the industrial VOC emissions in future years. This demonstrated that industrial VOC emissions in Hebei would amount to 1448.94 kt and 2203.66 kt in 2020 and 2030, with growth rates of 42.36% and 116.51% compared with 2015, respectively. If all industrial enterprises took the control measures, the VOC emissions could be reduced by 69% in 2030. The analysis of the scenarios found that the most effective action plan was to take the best available control technologies and clean production in key industries, including the chemical medicine, coke production, mechanical equipment manufacturing, organic chemical, packaging and printing, wood adhesive, industrial and construction dye, furniture manufacturing, transportation equipment manufacturing, and crude oil processing industries.

关键词:

distribution emission inventory industrial VOCs scenario prediction

作者机构:

  • [ 1 ] [Guo, Xiurui]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 2 ] [Shen, Yaqian]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 3 ] [Chen, Dongsheng]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 4 ] [Liu, Junfang]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 5 ] [Liu, Wenwen]Beijing Municipal Res Inst Environm Protect, Natl Engn Res Ctr Urban Environm Pollut Control, Beijing Key Lab VOCs Pollut Prevent & Treatment T, Beijing 100037, Peoples R China

通讯作者信息:

  • [Guo, Xiurui]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

ATMOSPHERE

年份: 2021

期: 5

卷: 12

2 . 9 0 0

JCR@2022

ESI学科: GEOSCIENCES;

ESI高被引阀值:6

被引次数:

WoS核心集被引频次: 9

SCOPUS被引频次: 12

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:812/3647170
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司