• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li Ming-Ai (Li Ming-Ai.) (学者:李明爱) | Wang Ruo-Tu (Wang Ruo-Tu.) | Wei Li-Na (Wei Li-Na.)

收录:

Scopus SCIE PubMed

摘要:

Motor imagery electroencephalogram (MI-EEG) play an important role in the field of neurorehabilitation, and a fuzzy support vector machine (FSVM) is one of the most used classifiers. Specifically, a fuzzy c-means (FCM) algorithm was used to membership calculation to deal with the classification problems with outliers or noises. However, FCM is sensitive to its initial value and easily falls into local optima.The joint optimization of genetic algorithm (GA) and FCM is proposed to enhance robustness of fuzzy memberships to initial cluster centers, yielding an improved FSVM (GF-FSVM).The features of each channel of MI-EEG are extracted by the improved refined composite multivariate multiscale fuzzy entropy and fused to form a feature vector for a trial. Then, GA is employed to optimize the initial cluster center of FCM, and the fuzzy membership degrees are calculated through an iterative process and further applied to classify two-class MI-EEGs.Extensive experiments are conducted on two publicly available datasets, the average recognition accuracies achieve 99.89% and 98.81% and the corresponding kappa values are 0.9978 and 0.9762, respectively.The optimized cluster centers of FCM via GA are almost overlapping, showing great stability, and GF-FSVM obtains higher classification accuracies and higher consistency as well.

关键词:

genetic algorithm joint optimization Motor imagery electroencephalogram fuzzy c-means fuzzy support vector machine

作者机构:

  • [ 1 ] [Li Ming-Ai]Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Wang Ruo-Tu]Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
  • [ 3 ] [Wei Li-Na]Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Technology and health care : official journal of the European Society for Engineering and Medicine

ISSN: 1878-7401

年份: 2021

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:108/3918492
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司