• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Mingui (Wang, Mingui.) | Cui, Di (Cui, Di.) | Wu, Lifang (Wu, Lifang.) | Jian, Meng (Jian, Meng.) | Chen, Yukun (Chen, Yukun.) | Wang, Dong (Wang, Dong.) | Liu, Xu (Liu, Xu.)

收录:

EI Scopus SCIE

摘要:

Weakly-supervised video object localization is a challenging yet important task. The system should spatially localize the object of interest in videos, where only the descriptive sentences and their corresponding video segments are given in the training stage. Recent efforts propose to apply image-based Multiple Instance Learning (MIL) theory in this video task, and propagate the supervision from the video into frames by applying different frame-weighting strategies. Despite their promising progress, the spatiotemporal correlation between different object regions in videos has been largely ignored. To fill the research gap, in this work we introduce a simple but effective feature expression and aggregation framework, which utilizes the self-attention mechanism to capture the latent spatio-temporal correlation between multimodal object features and design a multimodal interaction module to model the similarity between the semantic query in sentences and the object regions in videos. We conduct extensive experimental evaluation on the YouCookII and ActivityNet-Entities datasets, which demonstrates significant improvements over multiple competitive baselines. (C) 2021 Published by Elsevier B.V.

关键词:

Video object localization Spatio-temporal correlation Weakly-supervised

作者机构:

  • [ 1 ] [Wang, Mingui]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Cui, Di]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Wu, Lifang]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Jian, Meng]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 5 ] [Chen, Yukun]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 6 ] [Wang, Dong]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 7 ] [Liu, Xu]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • [Jian, Meng]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

PATTERN RECOGNITION LETTERS

ISSN: 0167-8655

年份: 2021

卷: 145

页码: 232-239

5 . 1 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:87

JCR分区:2

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:302/4970333
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司