• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Shang Hui (Shang Hui.) | Bai Shiyang (Bai Shiyang.) | Yao Jie (Yao Jie.) | Ma Shuangshuang (Ma Shuangshuang.) | Sun Jihong (Sun Jihong.) (学者:孙继红) | Su Hongjing (Su Hongjing.) | Wu Xia (Wu Xia.)

收录:

EI Scopus SCIE PubMed

摘要:

Zn(II) can efficiently promote the catalytic performance of imidazolium salt ionic liquids (imi-ILs) for the chemical fixation of CO2 into epoxides. To obtain sustainability, immobilized bifunctional catalysts containing both imi-ILs and Zn(II) were prepared using bimodal mesoporous silica (BMMs) as carrier, through grafting of Zn(OAc)2 and 1-(trimethoxysilyl)propyl-3-methylimidazolium chloride (Si-imi) separately in the nanopores. The catalysts, named as BMMs-Zn&ILs, were identified as efficient catalysts for cycloaddition reaction of CO2 into epoxides under solvent-free conditions. BMMs-Zn&ILs showed good catalytic activity, which increased with the increase of the molar ratio of Zn(II) to Si-imi. As a comparison, different catalytic systems including homogeneous imi-IL, BMMs-ILs and BMMs-Zn were studied to demonstrate different cooperation behaviors. Furthermore, the kinetics studies of homogeneous and heterogeneous bifunctional catalysts were employed to confirm the differences, as well as to support the proposed cooperative catalysis mechanism in the nanopores.

关键词:

Cycloaddition Cooperation catalysis Bifunctional catalysts Carbon dioxide Supported catalysts

作者机构:

  • [ 1 ] [Shang Hui]Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing, 100124, P.R. China
  • [ 2 ] [Bai Shiyang]Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing, 100124, P.R. China
  • [ 3 ] [Yao Jie]Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing, 100124, P.R. China
  • [ 4 ] [Ma Shuangshuang]Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing, 100124, P.R. China
  • [ 5 ] [Sun Jihong]Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing, 100124, P.R. China
  • [ 6 ] [Su Hongjing]Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing, 100124, P.R. China
  • [ 7 ] [Wu Xia]Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing, 100124, P.R. China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Chemistry, an Asian journal

ISSN: 1861-471X

年份: 2021

期: 3

卷: 16

页码: 224-231

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 10

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:1299/3893490
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司