• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Zhaoying (Liu, Zhaoying.) | Zhang, Xuesi (Zhang, Xuesi.) | Jiang, Tianpeng (Jiang, Tianpeng.) | Zhang, Ting (Zhang, Ting.) | Liu, Bo (Liu, Bo.) (学者:刘博) | Waqas, Muhammad (Waqas, Muhammad.) | Li, Yujian (Li, Yujian.)

收录:

EI SCIE

摘要:

In this paper, we studied infrared (IR) maritime salient object detection based on convolutional neural networks (CNNs). There are mainly two contributions. Firstly, we constructed a large extended IR ship image dataset (ExtIRShip) for salient maritime target detection, including 9,123 labelled IR images. Secondly, we proposed a global guided lightweight non-local depth feature (DG-Light-NLDF) model. We introduced Dilated Linear Bottleneck (DLB) to replace the standard convolution and adding a simplified global module to provide the location information of the potential salient object, the proposed method can significantly improve the efficiency of Light-NLDF. Experimental results demonstrate that the proposed DG-Light-NLDF model could detect IR maritime salient objects more accurately with less parameters. In addition, comparison experiments between two datasets validated that the larger dataset is also much more beneficial in improving saliency detection performance. © 2021 Elsevier B.V.

关键词:

Convolution Feature extraction Infrared imaging Large dataset Neural networks Object detection Object recognition Ships

作者机构:

  • [ 1 ] [Liu, Zhaoying]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Zhang, Xuesi]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Jiang, Tianpeng]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Zhang, Ting]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Liu, Bo]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Waqas, Muhammad]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 7 ] [Li, Yujian]School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin; 541004, China

通讯作者信息:

  • [zhang, ting]faculty of information technology, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Infrared Physics and Technology

ISSN: 1350-4495

年份: 2021

卷: 115

3 . 3 0 0

JCR@2022

ESI学科: PHYSICS;

ESI高被引阀值:7

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 10

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:2375/3584860
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司