• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jin, Liu (Jin, Liu.) (学者:金浏) | Xia, Hai (Xia, Hai.) | Jiang, Xuan-Ang (Jiang, Xuan-Ang.) | Du, Xiu-Li (Du, Xiu-Li.) (学者:杜修力)

收录:

EI CSCD

摘要:

The shear-span ratio has an important influence on the crack development and on the failure mode of reinforced concrete (RC) beams strengthened with carbon fiber reinforced polymer (CFRP). However, there were few studies on the effects of its shear strength and size effect. A mechanical analysis model for shear failure of reinforced concrete beams strengthened with CFRP was established by using three-dimensional numerical meso-scale simulation method, considering the meso-heterogeneity of the concrete and the interaction between the CFRP and concrete. Based on the verification of the rationality of the meso-scale method, the influence mechanism and law of the shear-span ratio on the shear failure and size effect of CFRP-strengthened RC beams were simulated and analyzed. The results show that: the shear-span ratio has a great influence on the shear failure mode of the strengthened beam, and the larger the shear-span ratio, the closer the beam is to the cable-stayed failure with better ductility. The shear-span ratio had better shear capacity for CFRP-strengthened beams and the influence on the size effect of shear strength was small. The shear-span ratio has a greater influence on the CFRP shear contribution in the strengthened beam. The larger the shear-span ratio, the better the shear effect of CFRP on strengthened beams. The beam reinforcement effect of the shear-span ratio (λ = 2.5) is most effective. Copyright ©2021 Engineering Mechanics. All rights reserved.

关键词:

Carbon fiber reinforced plastics Concrete beams and girders Concrete construction Failure (mechanical) Fiber reinforced concrete Graphite fibers Numerical methods Shear flow Size determination

作者机构:

  • [ 1 ] [Jin, Liu]The Key Laboratory of Urban Security and Disaster Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Xia, Hai]The Key Laboratory of Urban Security and Disaster Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Jiang, Xuan-Ang]The Key Laboratory of Urban Security and Disaster Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Du, Xiu-Li]The Key Laboratory of Urban Security and Disaster Engineering, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • 杜修力

    [du, xiu-li]the key laboratory of urban security and disaster engineering, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Engineering Mechanics

ISSN: 1000-4750

年份: 2021

期: 3

卷: 38

页码: 50-59 and 85

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 11

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:341/3614318
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司