• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ren, Kun (Ren, Kun.) | Huang, Long (Huang, Long.) | Fan, Chunqi (Fan, Chunqi.) | Han, Honggui (Han, Honggui.) (学者:韩红桂) | Deng, Hai (Deng, Hai.)

收录:

EI Scopus SCIE

摘要:

Traffic sign detection (TSD) using convolutional neural networks (CNN) is promising and intriguing for autonomous driving. Especially, with sophisticated large-scale CNN models, TSD can be performed with high accuracy. However, the conventional CNN models suffer the drawbacks of being time-consuming and resource-hungry, which limit their application and deployments in various platforms of limited resources. In this paper, we propose a novel real-time traffic sign detection system with a lightweight backbone network named Depth Separable DetNet (DS-DetNet) and a lite fusion feature pyramid network (LFFPN) for efficient feature fusion. The new model can achieve a performance trade-off between speed and accuracy using a depthwise separable bottleneck block, a lite fusion module, and an improved SSD detection front-end. The testing results on the MS COCO and the GTSDB datasets reveal that 23.1% mAP with 6.39 M parameters and only 1.08B FLOPs on MSCOCO, 81.35% mAP with 5.78 M parameters on GTSDB. With our model, the run speed is 61 frames per second (fps) on GTX 1080ti, 12 fps on Nvidia Jetson Nano and 16 fps on Nvidia Jetson Xavier NX.

关键词:

Autonomous driving Convolutional neural networks Feature fusion Object detection Traffic sign detection

作者机构:

  • [ 1 ] [Ren, Kun]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Huang, Long]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Fan, Chunqi]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Han, Honggui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Ren, Kun]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 6 ] [Huang, Long]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 7 ] [Fan, Chunqi]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 8 ] [Han, Honggui]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 9 ] [Ren, Kun]Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 10 ] [Huang, Long]Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 11 ] [Fan, Chunqi]Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 12 ] [Han, Honggui]Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 13 ] [Deng, Hai]Florida Int Univ, Dept Elect & Comp Engn, Miami, FL 33174 USA

通讯作者信息:

  • [Ren, Kun]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Ren, Kun]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China;;[Ren, Kun]Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL OF REAL-TIME IMAGE PROCESSING

ISSN: 1861-8200

年份: 2021

期: 6

卷: 18

页码: 2181-2191

3 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:87

JCR分区:3

被引次数:

WoS核心集被引频次: 16

SCOPUS被引频次: 20

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

在线人数/总访问数:719/3905094
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司