• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ruan, Xiaogang (Ruan, Xiaogang.) | Liu, Pengfei (Liu, Pengfei.) | Zhu, Xiaoqing (Zhu, Xiaoqing.)

收录:

EI

摘要:

Q-learning is a model-free iterative reinforcement learning algorithm that is widely used for navigating mobile robots in unstructured environments. However, the exploration and utilization of the environmental data limits the Q-learning convergence speed for mobile robot navigation. This study used the Q-learning algorithm and the fact that rodents use olfactory cues for spatial orientation and navigation to develop a Q-learning environmental cognitive strategy based on odor-reward shaping. This algorithm reduces useless exploration of the environment by improving the Q-learning action selection strategy. Environmental odor information is integrated into the algorithm with the olfactory factor used to weight the Q-learning and the odor-reward shaping in the action selection strategy. The algorithm effectiveness is evaluated in a simulation of movement in the labyrinth environment used in the Tolman mouse experiment. The results show that the Q-learning algorithm with odor-reward shaping reduces useless exploration of the environment, enhances cognitive learning of the environment, and improves the algorithm convergence speed. © 2021, Tsinghua University Press. All right reserved.

关键词:

Computer aided instruction Electronic nose Iterative methods Learning algorithms Learning systems Mammals Mobile robots Reinforcement learning

作者机构:

  • [ 1 ] [Ruan, Xiaogang]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Ruan, Xiaogang]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 3 ] [Liu, Pengfei]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Liu, Pengfei]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 5 ] [Zhu, Xiaoqing]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Zhu, Xiaoqing]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China

通讯作者信息:

  • [zhu, xiaoqing]beijing key laboratory of computational intelligence and intelligent system, beijing; 100124, china;;[zhu, xiaoqing]faculty of information technology, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Tsinghua University

ISSN: 1000-0054

年份: 2021

期: 3

卷: 61

页码: 254-260

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:186/3605219
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司