• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

He, Ming (He, Ming.)

收录:

CPCI-S EI Scopus

摘要:

Ant colony optimization (ACO) algorithms have been applied successfully to combinatorial optimization problems. Rough set theory offers a viable approach for feature selection from data sets. In this paper, the basic concepts of rough set theory and ant colony optimization are introduced, and the role of the basic constructs of rough set approach in feature selection, namely attribute reduction is studied. Base above research, a rough set and ACO based algorithm for feature selection problems is proposed. Finally, the presented algorithm was tested on UCI data sets and performed effectively.

关键词:

ant colony optimization core feature selection rough set

作者机构:

  • [ 1 ] Beijing Univ Technol, Coll Comp Sci, Beijing, Peoples R China

通讯作者信息:

  • [He, Ming]Beijing Univ Technol, Coll Comp Sci, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISCSCT 2008: INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND COMPUTATIONAL TECHNOLOGY, VOL 1, PROCEEDINGS

年份: 2008

页码: 247-250

语种: 英文

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次: 10

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:208/3605609
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司