收录:
摘要:
The purpose of this study was to investigate the regeneration effect of waste cooking oil (WCO) on aged asphalt with molecular dynamics (MD) simulation, comparing it with a rejuvenator. Firstly, the molecular models of virgin and aged asphalt were established by blending the four components of asphalt (saturate, aromatic, resin, and asphaltenes). Then, different dosages of the rejuvenator and WCO (6, 9, and 12%) were included in the aged asphalt model for its regeneration. After that, MD simulations were utilized for researching the mechanical and cohesive properties of the recycled asphalt, including its density, viscosity, cohesive energy density (CED), shear modulus (G), bulk modulus (K), and elastic modulus (E). The results show that the density values of the asphalt models were relatively lower than the existing experimental results in the literature, which is mostly attributed to the fact that the heteroatoms of the asphalt molecules were not considered in the simulation. On the other hand, the WCO addition decreased the viscosity, the shear modulus (G), the bulk modulus (K), and the elastic modulus (E) of the aged asphalt, improving its CED. Moreover, the nature of the aged asphalt was gradually restored with increasing rejuvenator or WCO contents. Compared with the rejuvenator, the viscosity of the aged asphalt was more effectively restored through adding WCO, while the effect of the CED and the mechanical properties recovery of the aged asphalt was relatively low. This implies that WCO could restore partial mechanical properties of aging asphalt, which proves the possibility of using WCO as an asphalt rejuvenator. Additionally, the MD simulation played an important role in understanding the molecular interactions among the four components of asphalt and the rejuvenator, which will serve as a guideline to better design a WCO rejuvenator and optimize its content.
关键词:
通讯作者信息: