收录:
摘要:
Multi-view human action recognition remains a challenging problem due to large view changes. In this article, we propose a transfer learning-based framework called transferable dictionary learning and view adaptation (TDVA) model for multi-view human action recognition. In the transferable dictionary learning phase, TDVA learns a set of view-specific transferable dictionaries enabling the same actions from different views to share the same sparse representations, which can transfer features of actions from different views to an intermediate domain. In the view adaptation phase, TDVA comprehensively analyzes global, local, and individual characteristics of samples, and jointly learns balanced distribution adaptation, locality preservation, and discrimination preservation, aiming at transferring sparse features of actions of different views from the intermediate domain to a common domain. In other words, TDVA progressively bridges the distribution gap among actions from various views by these two phases. Experimental results on IXMAS, ACT4(2), and NUCLA action datasets demonstrate that TDVA outperforms state-of-the-art methods.
关键词:
通讯作者信息:
电子邮件地址: