• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Ruicong (Zhang, Ruicong.) | Zhuo, Li (Zhuo, Li.) | Zhang, Hui (Zhang, Hui.) | Zhang, Yan (Zhang, Yan.) | Kim, Jinman (Kim, Jinman.) | Yin, Hongxia (Yin, Hongxia.) | Zhao, Pengfei (Zhao, Pengfei.) | Wang, Zhenchang (Wang, Zhenchang.)

收录:

EI Scopus SCIE PubMed

摘要:

Vestibule Segmentation is of great significance for the clinical diagnosis of congenital ear malformations and cochlear implants. However, automated segmentation is a challenging task due to the tiny size, blur boundary, and drastic changes in shape and size. In this paper, a vestibule segmentation method from CT images has been proposed specifically, which exploits different deep feature fusion strategies, including convolutional feature fusion for different receptive fields, channel attention based feature channel fusion, and encoder-decoder feature fusion. The experimental results on the self-established vestibule segmentation dataset show that, compared with several state-of-the-art methods, our method can achieve superior segmentation accuracy.

关键词:

Vestibule segmentation CT images Feature fusion

作者机构:

  • [ 1 ] [Zhang, Ruicong]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Zhuo, Li]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Zhang, Hui]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Zhang, Yan]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 5 ] [Kim, Jinman]Univ Sydney, Sch Comp Sci, Fac Engn, Sydney, NSW, Australia
  • [ 6 ] [Yin, Hongxia]Capital Med Univ, Beijing Friendship Hosp, Dept Radiol, Beijing, Peoples R China
  • [ 7 ] [Zhao, Pengfei]Capital Med Univ, Beijing Friendship Hosp, Dept Radiol, Beijing, Peoples R China
  • [ 8 ] [Wang, Zhenchang]Capital Med Univ, Beijing Friendship Hosp, Dept Radiol, Beijing, Peoples R China

通讯作者信息:

  • [Zhuo, Li]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China;;[Zhang, Hui]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

来源 :

COMPUTERIZED MEDICAL IMAGING AND GRAPHICS

ISSN: 0895-6111

年份: 2021

卷: 89

5 . 7 0 0

JCR@2022

ESI学科: CLINICAL MEDICINE;

ESI高被引阀值:75

JCR分区:1

被引次数:

WoS核心集被引频次: 11

SCOPUS被引频次: 11

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:454/4912554
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司