• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xu, Fei (Xu, Fei.) | Huang, Qiumei (Huang, Qiumei.) (学者:黄秋梅) | Jiang, Kun (Jiang, Kun.) | Ma, Hongkun (Ma, Hongkun.)

收录:

EI Scopus SCIE

摘要:

This paper presents a new type of local and parallel multigrid method to solve semilinear elliptic equations. The proposed method does not directly solve the semilinear elliptic equations on each layer of the multigrid mesh sequence, but transforms the semilinear elliptic equations into several linear elliptic equations on the multigrid mesh sequence and some low-dimensional semilinear elliptic equations on the coarsest mesh. Furthermore, the local and parallel strategy is used to solve the involved linear elliptic equations. Since solving large-scale semilinear elliptic equations in fine space, which can be fairly time-consuming, is avoided, the proposed local and parallel multigrid scheme will significantly improve the solving efficiency for the semilinear elliptic equations. Besides, compared with the existing multigrid methods which need the bounded second order derivatives of the nonlinear term, the proposed method only requires the Lipschitz continuation property of the nonlinear term. We make a rigorous theoretical analysis of the presented local and parallel multigrid scheme, and propose some numerical experiments to support the theory. (C) 2020 IMACS. Published by Elsevier B.V. All rights reserved.

关键词:

Local and parallel Multigrid method Semilinear elliptic equations Multilevel correction method

作者机构:

  • [ 1 ] [Xu, Fei]Beijing Univ Technol, Fac Sci, Beijing Inst Sci & Engn Comp, Beijing 100124, Peoples R China
  • [ 2 ] [Huang, Qiumei]Beijing Univ Technol, Fac Sci, Beijing Inst Sci & Engn Comp, Beijing 100124, Peoples R China
  • [ 3 ] [Jiang, Kun]Beijing Univ Technol, Fac Sci, Beijing Inst Sci & Engn Comp, Beijing 100124, Peoples R China
  • [ 4 ] [Ma, Hongkun]Zhuhai Huafa Investment Holdings Grp Co Ltd, Hengqin 519000, Peoples R China
  • [ 5 ] [Ma, Hongkun]Sun Yat Sen Univ, Business Sch, Guangzhou 510275, Guangdong, Peoples R China

通讯作者信息:

  • [Ma, Hongkun]Zhuhai Huafa Investment Holdings Grp Co Ltd, Hengqin 519000, Peoples R China

查看成果更多字段

相关关键词:

来源 :

APPLIED NUMERICAL MATHEMATICS

ISSN: 0168-9274

年份: 2021

卷: 162

页码: 20-34

2 . 8 0 0

JCR@2022

ESI学科: MATHEMATICS;

ESI高被引阀值:31

JCR分区:1

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

归属院系:

在线人数/总访问数:1469/3896339
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司