• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yuan, Haitao (Yuan, Haitao.) | Bi, Jing (Bi, Jing.) | Zhou, MengChu (Zhou, MengChu.) | Liu, Qing (Liu, Qing.) | Ammari, Ahmed Chiheb (Ammari, Ahmed Chiheb.)

收录:

EI SCIE

摘要:

The industry of data centers is the fifth largest energy consumer in the world. Distributed green data centers (DGDCs) consume 300 billion kWh per year to provide different types of heterogeneous services to global users. Users around the world bring revenue to DGDC providers according to actual quality of service (QoS) of their tasks. Their tasks are delivered to DGDCs through multiple Internet service providers (ISPs) with different bandwidth capacities and unit bandwidth price. In addition, prices of power grid, wind, and solar energy in different GDCs vary with their geographical locations. Therefore, it is highly challenging to schedule tasks among DGDCs in a high-profit and high-QoS way. This work designs a multiobjective optimization method for DGDCs to maximize the profit of DGDC providers and minimize the average task loss possibility of all applications by jointly determining the split of tasks among multiple ISPs and task service rates of each GDC. A problem is formulated and solved with a simulated-annealing-based biobjective differential evolution (SBDE) algorithm to obtain an approximate Pareto-optimal set. The method of minimum Manhattan distance is adopted to select a knee solution that specifies the Pareto-optimal task service rates and task split among ISPs for DGDCs in each time slot. Real-life data-based experiments demonstrate that the proposed method achieves lower task loss of all applications and larger profit than several existing scheduling algorithms. Note to Practitioners-This work aims to maximize the profit and minimize the task loss for DGDCs powered by renewable energy and smart grid by jointly determining the split of tasks among multiple ISPs. Existing task scheduling algorithms fail to jointly consider and optimize the profit of DGDC providers and QoS of tasks. Therefore, they fail to intelligently schedule tasks of heterogeneous applications and allocate infrastructure resources within their response time bounds. In this work, a new method that tackles drawbacks of existing algorithms is proposed. It is achieved by adopting the proposed SBDE algorithm that solves a multiobjective optimization problem. Simulation experiments demonstrate that compared with three typical task scheduling approaches, it increases profit and decreases task loss. It can be readily and easily integrated and implemented in real-life industrial DGDCs. The future work needs to investigate the real-time green energy prediction with historical data and further combine prediction and task scheduling together to achieve greener and even net-zero-energy data centers.

关键词:

Cloud computing Cloud data centers Data centers green computing Green products multiobjective differential evolution (DE) Optimization Quality of service quality of service (QoS) simulated annealing (SA) Task analysis task scheduling Time factors

作者机构:

  • [ 1 ] [Yuan, Haitao]New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA
  • [ 2 ] [Zhou, MengChu]New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA
  • [ 3 ] [Liu, Qing]New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA
  • [ 4 ] [Bi, Jing]Beijing Univ Technol, Fac Informat Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Ammari, Ahmed Chiheb]Sultan Qaboos Univ, Coll Engn, Dept Elect & Comp Engn, Muscat 123, Oman

通讯作者信息:

  • [Bi, Jing]Beijing Univ Technol, Fac Informat Technol, Sch Software Engn, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

ISSN: 1545-5955

年份: 2021

期: 2

卷: 18

页码: 731-742

5 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:9

被引次数:

WoS核心集被引频次: 73

SCOPUS被引频次: 90

ESI高被引论文在榜: 5 展开所有

  • 2022-3
  • 2022-1
  • 2021-11
  • 2021-9
  • 2021-7

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:85/3603038
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司