• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Huiqing (Zhang, Huiqing.) | Li, Shuo (Li, Shuo.) | Li, Donghao (Li, Donghao.) | Wang, Zichen (Wang, Zichen.) | Zhou, Qixiang (Zhou, Qixiang.) | You, Qixin (You, Qixin.)

收录:

EI Scopus SCIE

摘要:

Sonar technology plays an important role in the development of marine resources and military strategy. Due to the bad quality of underwater acoustics channels, the sonar images collected by sonar technology equipment are easily affected by various kinds of distortions. To obtain high-quality sonar images, the authors devise a novel dual-path deep neural network (DPDNN) to measure the quality of sonar images. In these two paths, the authors use a batch normalization layer to reduce the training time and use the skip operation to speed up the feature extraction . Based on the above two operations, the authors extract the microscopic and macroscopic structures of sonar images, respectively. Finally, a global average pooling layer and a fully connection layer are used to connect the above two paths. Experiments show that the authors' DPDNN achieves significant improvements in prediction performance and efficiency. The source code will be published in the near future.

关键词:

作者机构:

  • [ 1 ] [Zhang, Huiqing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Shuo]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Donghao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Zichen]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Zhou, Qixiang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [You, Qixin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 7 ] [Zhang, Huiqing]Minist Educ, Key Lab Artificial Intelligence, Shanghai, Peoples R China
  • [ 8 ] [Li, Shuo]Minist Educ, Key Lab Artificial Intelligence, Shanghai, Peoples R China
  • [ 9 ] [Li, Donghao]Minist Educ, Key Lab Artificial Intelligence, Shanghai, Peoples R China
  • [ 10 ] [Zhang, Huiqing]Minist Educ, Engn Res Ctr Digital Community, Beijing, Peoples R China
  • [ 11 ] [Li, Shuo]Minist Educ, Engn Res Ctr Digital Community, Beijing, Peoples R China
  • [ 12 ] [Li, Donghao]Minist Educ, Engn Res Ctr Digital Community, Beijing, Peoples R China

通讯作者信息:

  • [Li, Shuo]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IET IMAGE PROCESSING

ISSN: 1751-9659

年份: 2021

期: 4

卷: 16

页码: 992-999

2 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:87

JCR分区:3

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:809/3898911
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司