• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jiang, Wentao (Jiang, Wentao.) | Lu, Hao (Lu, Hao.) | Chen, Jinghong (Chen, Jinghong.) | Liu, Xuemei (Liu, Xuemei.) | Liu, Chao (Liu, Chao.) (学者:刘超) | Song, Xiaoyan (Song, Xiaoyan.) (学者:宋晓艳)

收录:

EI SCIE

摘要:

Yttria partially stabilized zirconia was introduced into WC-Co cemented carbides to enhance their mechanical performance. The hardness and fracture toughness were improved simultaneously with the addition of ZrO2. Particularly, the fracture toughness of the cemented carbides was significantly enhanced. The mechanism was mainly attributed to the stress-induced phase transformation of tetragonal ZrO2 to monoclinic ZrO2. This phase transformation introduced a compressive stress field and deflected the micro-cracks. In addition, the ZrO2 particles dispersed homogeneously in the WC skeleton and had good interfacial bonding with both WC and Co phases, which was beneficial to the mechanical properties of the cemented carbides. This study provides a new promising approach to break the trade-off between the hardness and fracture toughness of cemented carbides to achieve excellent comprehensive mechanical properties. The new strategy will be also promising to be applied in a variety of cermets or ceramic-based composites. (C) 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

关键词:

Cemented carbide Stress-induced phase transformation Toughening Zirconia

作者机构:

  • [ 1 ] [Jiang, Wentao]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 2 ] [Lu, Hao]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 3 ] [Chen, Jinghong]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 4 ] [Liu, Xuemei]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 5 ] [Song, Xiaoyan]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 6 ] [Liu, Chao]Xiamen Tungsten Co Ltd, Xiamen 361009, Peoples R China

通讯作者信息:

  • 宋晓艳

    [Lu, Hao]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China;;[Song, Xiaoyan]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

MATERIALS & DESIGN

ISSN: 0264-1275

年份: 2021

卷: 202

8 . 4 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:8

被引次数:

WoS核心集被引频次: 35

SCOPUS被引频次: 36

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:553/2913258
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司