• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Bo (Liu, Bo.) (学者:刘博) | Zhao, Yelong (Zhao, Yelong.) | Yang, Bin (Yang, Bin.) | Zhao, Shuangtao (Zhao, Shuangtao.) | Gu, Rentao (Gu, Rentao.) | Gahegan, Mark (Gahegan, Mark.)

收录:

EI Scopus SCIE

摘要:

As an important method to diagnose gastric cancer, gastric pathological sections images (GPSI) are hard and time-consuming to be recognized even by an experienced doctor. An efficient method was designed to detect gastric cancer in magnified (20x) GPSI using deep learning technology. A novel DenseNet architecture was applied, modified with a multistage attention module (MSA-DenseNet). To develop this model focusing on gastric features, a two-stage-input attention module was adopted to select more semantic information of cancer. Moreover, the pretraining process was divided into two steps to improve the effect of the attention mechanism. After training, our method achieved a state-of-the-art performance yielding 0.9947 F1 score and 0.9976 ROC AUC on a test dataset. In line with our expectation in clinical practice, a high recall (0.9929) was produced with high sensitivity to the positive samples. These results indicate that this new model performs better than current artificial detection approaches and its effectiveness is therefore validated in cancer pathological diagnoses.

关键词:

computer&#8208 assisted diagnosis gastric pathological sections gastric cancer deep learning

作者机构:

  • [ 1 ] [Liu, Bo]Beijing Univ Technol, Sch Software Engn, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Zhao, Yelong]Beijing Univ Technol, Sch Software Engn, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Yang, Bin]Beijing Univ Technol, Sch Software Engn, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Zhao, Shuangtao]Chinese Acad Med Sci & Peking Union Med Coll, Dept Intervent Therapy, Natl Canc Ctr, Canc Hosp, Beijing 100021, Peoples R China
  • [ 5 ] [Gu, Rentao]Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
  • [ 6 ] [Gahegan, Mark]Univ Auckland, Sch Comp Sci, Auckland 1010, New Zealand

通讯作者信息:

  • [Zhao, Shuangtao]Chinese Acad Med Sci & Peking Union Med Coll, Dept Intervent Therapy, Natl Canc Ctr, Canc Hosp, Beijing 100021, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE

ISSN: 1532-0626

年份: 2021

期: 10

卷: 33

2 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:87

JCR分区:3

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:371/4973390
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司