• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jia, Shuncheng (Jia, Shuncheng.) | Zhang, Tielin (Zhang, Tielin.) | Cheng, Xiang (Cheng, Xiang.) | Liu, Hongxing (Liu, Hongxing.) | Xu, Bo (Xu, Bo.)

收录:

Scopus SCIE PubMed

摘要:

Different types of dynamics and plasticity principles found through natural neural networks have been well-applied on Spiking neural networks (SNNs) because of their biologically-plausible efficient and robust computations compared to their counterpart deep neural networks (DNNs). Here, we further propose a special Neuronal-plasticity and Reward-propagation improved Recurrent SNN (NRR-SNN). The historically-related adaptive threshold with two channels is highlighted as important neuronal plasticity for increasing the neuronal dynamics, and then global labels instead of errors are used as a reward for the paralleling gradient propagation. Besides, a recurrent loop with proper sparseness is designed for robust computation. Higher accuracy and stronger robust computation are achieved on two sequential datasets (i.e., TIDigits and TIMIT datasets), which to some extent, shows the power of the proposed NRR-SNN with biologically-plausible improvements.

关键词:

synaptic plasticity sparse connections neuronal plasticity spiking neural network reward propagation

作者机构:

  • [ 1 ] [Jia, Shuncheng]Chinese Acad Sci CASIA, Inst Automat, Res Ctr Brain Inspired Intelligence, Beijing, Peoples R China
  • [ 2 ] [Zhang, Tielin]Chinese Acad Sci CASIA, Inst Automat, Res Ctr Brain Inspired Intelligence, Beijing, Peoples R China
  • [ 3 ] [Cheng, Xiang]Chinese Acad Sci CASIA, Inst Automat, Res Ctr Brain Inspired Intelligence, Beijing, Peoples R China
  • [ 4 ] [Liu, Hongxing]Chinese Acad Sci CASIA, Inst Automat, Res Ctr Brain Inspired Intelligence, Beijing, Peoples R China
  • [ 5 ] [Xu, Bo]Chinese Acad Sci CASIA, Inst Automat, Res Ctr Brain Inspired Intelligence, Beijing, Peoples R China
  • [ 6 ] [Jia, Shuncheng]Univ Chinese Acad Sci UCAS, Sch Artificial Intelligence, Beijing, Peoples R China
  • [ 7 ] [Zhang, Tielin]Univ Chinese Acad Sci UCAS, Sch Artificial Intelligence, Beijing, Peoples R China
  • [ 8 ] [Cheng, Xiang]Univ Chinese Acad Sci UCAS, Sch Artificial Intelligence, Beijing, Peoples R China
  • [ 9 ] [Xu, Bo]Univ Chinese Acad Sci UCAS, Sch Artificial Intelligence, Beijing, Peoples R China
  • [ 10 ] [Liu, Hongxing]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 11 ] [Xu, Bo]Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Shanghai, Peoples R China

通讯作者信息:

  • [Zhang, Tielin]Chinese Acad Sci CASIA, Inst Automat, Res Ctr Brain Inspired Intelligence, Beijing, Peoples R China;;[Xu, Bo]Chinese Acad Sci CASIA, Inst Automat, Res Ctr Brain Inspired Intelligence, Beijing, Peoples R China;;[Zhang, Tielin]Univ Chinese Acad Sci UCAS, Sch Artificial Intelligence, Beijing, Peoples R China;;[Xu, Bo]Univ Chinese Acad Sci UCAS, Sch Artificial Intelligence, Beijing, Peoples R China;;[Xu, Bo]Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Shanghai, Peoples R China

查看成果更多字段

相关关键词:

来源 :

FRONTIERS IN NEUROSCIENCE

年份: 2021

卷: 15

4 . 3 0 0

JCR@2022

ESI学科: NEUROSCIENCE & BEHAVIOR;

ESI高被引阀值:71

JCR分区:2

被引次数:

WoS核心集被引频次: 10

SCOPUS被引频次: 11

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:711/5059414
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司