收录:
摘要:
Expanded Granular Sludge Bed (EGSB) reactor was used as the start-up device of the CANON process in this experiment, in the effects of different upflow velocity on the nitrogen removal performance of the Completely Autotrophic Nitrogen removal Over Nitrite (CANON) process was investigated. The change of particle size of granular sludge in Integrated Fixed-film and Activated Sludge (IFAS) system and the biomass of biofilm were quantitatively analyzed. In addition, high-throughput sequencing analysis was carried out for microorganisms on granular sludge and biofilm to explore the characteristics of microbial community structure on different aggregates. The results showed that the total nitrogen removal rate (NRR) increased from 0.20kg/(m3•d) to 0.66kg/(m3•d) in the continuous operation process when the upflow velocity increased from 2m/h to 6m/h. The ratio of ΔNO3--N/ΔNH4+-N was steadily kept at 0.11, a realization of the efficient and stable operation of CANON. When the upflow velocity increased to 8m/h, the nitrogen removal performance of CANON process was unstable, the NRR decreased to 0.42kg/(m3•d), and the average particle size of sludge decreased from 1.3mm to 0.9mm. When the upflow velocity restored back to 6m/h, the nitrogen removal performance of CANON process gradually recovered. Ultimately, the NRR was stabilized at 0.60kg/(m3•d), the average particle size of sludge was restored to 1.2mm, and the specific growth rate of biofilm biomass was 0.0024d-1. High throughput sequencing showed that Aerobic Ammonia Oxidation Bacteria (AerAOB) functional bacteria Nitrosomonas (2.45%) and Anaerobic Ammonia Oxidation Bacteria (AnAOB) functional bacteria Candidatus kuenenia (2.38%) were the main genera in the granular sludge. The main bacteria in the biofilm were AnAOB functional bacteria Candidatus kuenenia (9.78%) and Candidatus brocadia (4.23%), while a small amount of AerAOB functional bacteria Nitrosomonas (0.40%) were also detected. The results suggested that there were some differences in two microorganisms in different aggregates. © 2021, Editorial Board of China Environmental Science. All right reserved.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
China Environmental Science
ISSN: 1000-6923
年份: 2021
期: 4
卷: 41
页码: 1737-1745