Indexed by:
Abstract:
The road environment prediction is an essential task for intelligent vehicle. In this study, we provide a flexible system that focuses on freespace detection and road environment prediction to host vehicle. The hardware of this system includes two parts: a binocular camera and a low-power mobile platform, which is flexible and portable for a variety of intelligent vehicle. We put forward a multiscale stereo matching algorithm to reduce the computing cost of the hardware unit. Based on disparity space and points cloud, we propose a weighted probability grid map to detect freespace region and a state model to describe the road environment. The experiments show that the proposed system is accurate and robust, which indicates that this technique is fully competent for road environment prediction for intelligent vehicle. © 2021 Chao Ma et al.
Keyword:
Reprint Author's Address:
Email:
Source :
Wireless Communications and Mobile Computing
ISSN: 1530-8669
Year: 2021
Volume: 2021
ESI HC Threshold:87
JCR Journal Grade:3
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: